Supported Ionic Liquid Phase (SILP) Catalysts for the Water-Gas-Shift Reaction at Ambient Pressure and Very Low Temperature
نویسندگان
چکیده
منابع مشابه
Homogeneous ruthenium-based water-gas shift catalysts via supported ionic liquid phase (SILP) technology at low temperature and ambient pressure.
Novel ruthenium-based supported ionic liquid phase (SILP) catalysts for the water-gas shift (WGS) reaction are reported which, compared to classical low temperature shift systems, operate at much lower temperatures and even at ambient pressure.
متن کاملGold–ceria catalysts for low-temperature water-gas shift reaction
Nanostructured Au–ceria is a promising new catalyst for low-temperature water-gas shift (LTS). Preparation, characterization, and catalytic properties of this material are reported in this paper. Gold–ceria was prepared by deposition–precipitation (DP), coprecipitation (CP), and gelation methods. The gold loading was varied between 1 and 8.3 at.%, while lanthanum used as a dopant in ceria, was ...
متن کاملNanostructured Au–CeO2 catalysts for low-temperature water–gas shift
The composite system of nanostructured gold and cerium oxide, with a gold loading 5–8 wt%, is reported in this work as a very good catalyst for low-temperature water–gas shift. Activity depends largely on the presence of nanosized ceria particles. Various techniques of preparation of an active catalyst are disscussed. The presence of gold is crucial for activity below 300 ◦C. A dramatic effect ...
متن کاملLow-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts
In this paper we report on the activity of Cuand Ni-containing cerium oxide catalysts for low-temperature water-gas shift (WGS). Bulk catalysts were prepared in nanocrystalline form by the urea co-precipitation–gelation method. Lanthanum dopant (10 at.%) was used as a structural stabilizer of ceria, while the content of Cu or Ni was in the range of 5–15 at.% (2–8 wt.%). At low metal loadings, C...
متن کاملActivity and stability of low-content gold–cerium oxide catalysts for the water–gas shift reaction
We report here on the high activity and stability of low-content gold–cerium oxide catalysts for the water–gas shift reaction (WGS). These catalysts are reversible in cyclic reduction–oxidation treatment up to 400 8C, are non-pyrophoric, and are thus potential candidates for application to hydrogen generation for fuel cell power production. Low-content (0.2–0.9 at.%) gold–ceria samples were pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemie Ingenieur Technik
سال: 2010
ISSN: 0009-286X
DOI: 10.1002/cite.201050004